Interpreting Graph Colorability in Finite Semigroups

نویسندگان

  • Marcel Jackson
  • Ralph McKenzie
چکیده

We show that a number of natural membership problems for classes associated with finite semigroups are computationally difficult. In particular, we construct a 55-element semigroup S such that the finite membership problem for the variety of semigroups generated by S interprets the graph 3-colorability problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Graphs Related to Green Relations of Finite Semigroups

In this paper we develop an analog of the notion of the con- jugacy graph of  nite groups for the  nite semigroups by considering the Green relations of a  nite semigroup. More precisely, by de ning the new graphs $Gamma_{L}(S)$, $Gamma_{H}(S)$, $Gamma_{J}(S)$ and $Gamma_{D}(S)$ (we name them the Green graphs) related to the Green relations L R J H and D of a  nite semigroup S , we  first atte...

متن کامل

Geometric Semigroup Theory

Geometric semigroup theory is the systematic investigation of finitely-generated semigroups using the topology and geometry of their associated automata. In this article we show how a number of easily-defined expansions on finite semigroups and automata lead to simplifications of the graphs on which the corresponding finite semigroups act. We show in particular that every finite semigroup can b...

متن کامل

Sublinear time algorithms in the theory of groups and semigroups

Sublinear time algorithms represent a new paradigm in computing, where an algorithm must give some sort of an answer after inspecting only a small portion of the input. The most typical situation where sublinear time algorithms are considered is property testing. There are several interesting contexts where one can test properties in sublinear time. A canonical example is graph colorability. To...

متن کامل

Reducibility of Pointlike Problems

We show that the pointlike and the idempotent pointlike problems are reducible with respect to natural signatures in the following cases: the pseudovariety of all finite semigroups in which the order of every subgroup is a product of elements of a fixed set π of primes; the pseudovariety of all finite semigroups in which every regular J-class is the product of a rectangular band by a group from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJAC

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2006